A Teosinte Christmas in Colorado

So, i know I’ve blogged a bit about experimentally growing Teosinte in my post about growing prehistoric corn and also in my post about differences between teosinte species. Both posts have gotten quite a bit of traffic over the years and have brought people to my blog who are interested in Teosinte specifically.

For those of you who don’t know Teosinte is a progenitor to modern Corn (Also known as Maize), which is still able to interbreed with Corn. Some teosinte is annual, while others are perennial (or maybe bi-annual). There are many people who are interested in breeding perennial teosinte with corn to make perennial or bi-annual corn.

The major problem with trying to grow Teosinte in a moderate climate as here in Colorado in the United States is that it is adapted to grow in the climate of mexico and our growing season just isn’t really long enough. Even more so since Teosinte is day-length sensitive and does not even start to tassel, silk, and pollinate until the days get short and the sunlight shifts deeper into the red spectrum. By the time that happens here it is usually around August and often we get snow by September or October. Definitely not enough time for Teosinte or Corn seeds to mature and dry down for saving. …Or is it?!

Well, this year it just happened to turn out just barely long enough. I’m calling it my Christmas miracle! haha. I think it was a combination of it being a La Nina weather year with an unusually warm fall with no snow until here in December. But also with the fact that i dug up my clump of teosinte plants and put them in a pot in the garage. Though they were a bit unhappy in the garage and were touching the ceiling.

Still i was able to keep them in there long enough to hand pollinate them. But to be honest i thought i had again failed to get viable Teosinte seeds. But when the plants were dead i went out and happened to find some! Above is a picture of what i believe to be seeds of ‘Zea mexicana’ teosinte seeds.

If there is one moral of this story that you should take away it is this: Never give up even when everyone else thinks you are crazy or tell you that what you believe is impossible. I learned this in gardening from my friend Joseph Lofthouse of Utah. He has had success with so many of his unusual crops that no one else in his valley of Utah is able to grow. He often starts with many varieties of a plant as possible and grows as many as he can. Often more than 90% of them die or fail to produce seeds. But he only needs a few that do. Once he gets seeds he can start to effort to plant them year after year and adapt them to his climate. If they still fail to thrive he lets them die or culls them off himself. But he has a variety of unusual crops, such as Landrace Watermelon adapted to Utah (and by extension Colorado), Landrace Cantaloupe, Landrace inter-species hybrid squashes, Tomatoes that are self-incompatible and are highly attractive to bees (modern tomatoes are not at all and are highly inbred), and more.


On the left here is a photo of one small cob of a teosinte hybrid (zea diploperennis-corn hybrid from the USDA) pollinated with what i believe to be flour or field corn pollen. On the right is the same teosinte-corn hybrid cob line but i believe this one was self pollinated with its own pollen. It seems to have popcorn heritage as the seeds show popcorn / flint corn characteristics.


Here is another strain of day-length neutral teosinte (decended from Zea mexicana) that a collaborator Joseph Lofthouse of Utah is growing and having success with. I believe he got the seed originally from NativeseedsSEARCH in Arizona. He decided to test if it makes good popcorn.


Here is my Teosinte clump in the summer of 2016.


Here is the same spot with snow on it now in winter.

If you’d like to follow the discussion about growing teosinte in places it is not normally supposed to grow (or other unusual crops) then visit the Alan Bishop Homegrown Goodness plant breeding forum here!

Orange, Yellow, and Red-podded peas.. oh my!

Sorry for not posting anything about plant breeding lately. I’ve been rather busy this year. But i still have a few plant breeding projects (mostly from last year) that i dedicated garden space this year  for. These include my Colorado bred / adapted Watermelon Landrace, which did quite well last year (even a racoon thought so and ate one that was overripe). My Wild Pueblo squash from Utah. An attempt at a sweet potato growing / breeding project. A mass tomato growout / trial. Some perennial teosinte-maize hybrids. And my various pea variety growouts which includes: Salmon-flowered pea and crosses, mummy-white and crosses, mummy-pea, Biskopens and hoped crosses, Joseph’s red-podded peas, Joseph’s yellow podded peas, Orange-pod, Virescens Mutante, Sugar Magnolia, Sugaree, Green Beauty, Purple Passion, Dwarf Grey Sugar, Spring Rose, Canoe, Mighty Midget. I also finally made one successful cross this year between Mighty Midget and Purple Passion. That should eventually give me a super dwarf with purple seeds and also improve purple passion to have stronger stems as it’s normally a very spindly plant.

This winter, i think in February i  experimented with making a small cold-frame and using it to plant some of my peas super early. You can see it here where i watered it with snow and then a few weeks later the pea seedlings emerging but it still being rather cold outside. It worked great though. This particular cold frame is more suited for super dwarf or extra dwarf peas or lettuce or something. If i had a greenhouse i’d totally experiment more with growing vegetables in the winter.


A nice segregating yellow pod from the red-podded breeding line. Very nice.


A nice yellow and red mottled pea pod. The contrast is what makes this one really stand out! A line to keep an eye on for sure.




A remnant from Dan Quickert’s purple snow pea project. This is one of the few that didn’t die off a few years back, so this one must have had much better genetics than it’s siblings. A nice example of a purple snow pea, which are still quite rare. This one is called ‘Midnight Snow’.


And some of the orange-pod gene peas (orp) i’m growing from the Gatersleben gene bank. These have an interesting orange color on the inside of the pod. I hope to use these to make better yellows and better red podded peas in the future.

‘Wild Pueblo’ Squash Variety (2015)

Wild Pueblo Squash, Loveland Colorado 2012

I feel somewhat bad that i haven’t done much with plant breeding posts or other projects like my homemade Taffy Machine, or chemistry. I had some of those projects listed on my website. Unfortunately my website has been neglected my me and is currently down and redirects here. Perhaps by next year i can work on it again. Until then, i will try my best to diversify my blog and post some of it here.


This year i was able to grow some squash. In particular i was able to grow a few plants of my ‘Wild Pueblo’ Squash. Cucurbita maxima ‘Wild Pueblo’. Wild Pueblo is the name i have given it after both of our native pueblo ancestry. The woman who was kind enough to give me seeds was originally calling it Wild Hopi. But since i do not know if this is specifically a squash grown by the Hopi i decided to rename it. In any case it seems to be an Ancestral Puebloan variety of squash that is very old.

Photo by Bobbi HolyOak, 2011, Moab Utah

In the past i never really cared that much about squash. Probably because i always had the attitude that all squash are the same. But, since I’ve been trying to find my own crops that are personal and thrive in my climate (even resorting to breeding some from scratch), I’ve decided that it would be incomplete without my own squash. In fact i think my squash are becoming my favorite thing to grow. I have a feeling that squash are going to be my favorite crop. There is just something special about seeing a squash plant growing from seed. Almost sacred and special. It’s hard to explain. Corn has a similar effect on me, but even more so with squash.


Wild Pueblo was originally recovered growing in the wild of southeast Utah somewhere around the Monticello area. Close to the famous Newspaper Rock historic site. It was said to be found off the beaten track growing behind an old somewhat hidden pueblo ruin. Next to the ruin was a small stream. Growing next to the stream was a large squash plant with several large ripe squash fruit. I estimate that it is possible that it could have been growing undisturbed in that area for over 150 years! If so, this thing could have some awesome genetics. I’m doing my best to grow out the seed and preserve this variety.

Wild Pueblo Squash, 2012
Wild Pueblo Squash, 2012, Loveland Colorado
Wild Pueblo Squash on the left. Hopi White Squash on the right.

I suspect Wild Pueblo is an older variety of squash which may be related to a landrace which may have been used to breed the variety called “lakota squash”. according to reports…

“The Lakota squash, a mid-1990’s open-pollinated introduction developed at the University of Nebraska by Dr. D. P. Coyne. Dr. Coyne experimented with crosses and selections to assure more uniform pigmentation of this beautiful squash before making it available to the trade.

Lakota squash was developed from seeds obtained by the University from Nebraska’s Fort Robinson, once a prairie Cavalry post, later an agricultural site, now a National Park. The variety it was derived from is no longer in cultivation. It had been grown by Native American peoples along the Missouri Valley for centuries before the arrival of Europeans to the continent. This indigenous squash was also cultivated by the troops stationed at Nebraska’s Forts Atkinson and Robinson, and by early Nebraska settlers.”

Edit: after talking to someone at the University of Nebraska who worked with Dr. Coyne with the original germplasm of the non-hubbard parent landrace of squash i am told the fruits were actually oblong. Still might be worth trying to grow out that accession of seed before it’s no longer viable and available… i will see if i can get some seed…

I have only grown this variety twice, but even so it has some incredible diversity which i find absolutely fascinating. In time i think i can do some great things with it, perhaps even selecting it to grow even better.

Photo by Bobbi HolyOak, 2011, Moab Utah

This year was a very odd year to grow things. Perhaps the El Nino weather was to blame. I don’t know. All i can say is that my squash took all season to grow anything at all. I only got one plant that grew big and produced a large squash, the rest were small, but contained seeds. Next year i will try to plant more and do better.

Like i said before, it has a LOT of diverse genetics!


All i can say for now is that it is good to be home.

Calculating Growing Season – Revisited 2015

Several years back i investigated using locally available weather station data to average weather data and to speculate (hopefully accurate) weather patterns and more important to me an estimate of the length of time i have to grow things in my area and climate. In a sense it worked, but it was limited by my relative lack of long-term data over a number of years. This past spring i decided to try it again and use more years if possible. These graphs are what i came up with:

Growing Season graph of Northern Colorado

The first graph is basically a line graph. In reality i used about 5 years years worth of weather data, but to make it easier to see i simplified it to 3 years and an average line. The average line really helped because as you can see each year had some significant differences in spikes of heat and dips of cool, but the overall pattern is the same. It’s the pattern i’m interested it. Because in theory it should be relatively stable and should provide an accurate estimate of my growing season and when the best times are to plant and best times to harvest before fall frosts.

Growing Season Graph of Loveland, Colorado

Graph number 2 is actually better and easier to read. Instead of using a line graph it uses a bar graph type to display the data which is easier to read and use. Both graphs i used a (cooling) growing degree days base of 50F.  50 degrees Fahrenheit is the stated lowest temp that warm season crops like squash will grow at. To help increase accuracy of my growing season i drew an arbitrary line at the 20 degree mark above the base temp of 50F, so that would be 70F?, i think. Anyway, this gave me a rough estimate that i could plant warm season crops as early as April 22nd-ish and that my season would end about October 28th. It turned out my end-of-season prediction was fairly dead on this year as i think we got a frost on October 27th. The beauty of not simply setting a base of 60F or 70F and cutting anything below that off is that it gives me a rough estimate of my growing season for cool season and frost-tolerant crops as well. According to this i possibly could have planted peas, radishes, etc around March 11th in spring and in fall possibly as late producing as November 18th. Interesting. I have never planted anything as early as March 11th, even cool season crops. …Maybe i should…

…so yeah.. anyway it seems fairly accurate for my uses. I have yet to graph good rain data yet. But this graph is a rough estimate for the growing season in Loveland Colorado, Fort Collins Colorado, Greeley, and any other nearby places. But if at all possible please use the weather data from your nearest weather station.

www.degreedays.net/ (download “cooling degree days” data)

Wunderground.com (direct access to your local mini weather stations)

Originally inspired by Joseph Lofthouse. The original thread that started it all: http://alanbishop.proboards.com/thread/5337/corn-breeding-heat-units-charts?page=1

Project Updates November 2015

80/20 1020 Extruded aluminum t-slot y-axis 3d printer bracket
80/20 1020 Extruded aluminum t-slot y-axis 3d printer bracket

The first update is that i’m still steadily designing new parts in solidworks for my custom 3D printer. This photo is one of two y-brackets that will hold the 1020 size t-slot extruded aluminum (from 80/20) y-axis beam. It looked good in Solidworks, now it just needs to be fabricated (3d printed) into a real-world working part (as with many other parts).

Y-bracket for custom 3D printer
Y-axis bracket for custom 3D printer

It’s really fun designing parts and then seeing them become real functional parts. Recently I’ve even been looking into a local program for CNC machinist training as a job. Apparently there is a large shortage of qualified CNC machinists in my area along with a booming and returning engineering and manufacturing hub here in the area.

While i was designing new parts and fitting them together i found a few minor problems with a few of my old designs being off and not lining up properly with the 1020 extruded aluminum. So i spent some time fixing that and cleaning them up a bit. Good to find those errors on the computer first than after i make the parts.

I received the prototype PCB’s for the XYZZY Motor Controller 1.0, The downside is I’ve found numerous errors that i missed, so I’ve been trying to fix those. But then to compound those problems the main circuit itself has a problem where the HIP4081A h-bridge chip circuit is only driving a motor (in this case a test load LED) in one direction. At first it was shorting out the other direction, but now i think it just loads the current down and does not activate one side of the hbridge. It’s actually driving me crazy trying to fix it and find the cause of the problem, but it’s still quite a mystery. Perhaps electronics is just not my thing. Perhaps i really should give up on that project after never being able to have good success. But i don’t know.

In plant breeding news: i was able to harvest three corn cobs this year. Two were decent sized purple husked corn cobs, the other was a good multi-colored flint. The third one had lots of kernel color diversity, it even had several speckled kernels, and chin-marked ones, and even some that had both speckles and stripes! I recently found purple sweet potatoes at Whole Foods and i will be trying to sprout one and grow my own slips for next year.

I was also able to grow a few good squash this year, some good progress on the pea breeding, and an excellent year with Joseph’s Watermelon Landrace. Sorry, i didn’t get good photo’s of the watermelons, but i had some excellent red sweet watermelons and some good yellows as well. Especially for Northern Colorado, the watermelons are the plant breeding project i’m most excited about and ironically having the best success. Can’t wait for next year! And all this despite it being an incredible difficult and strange gardening year!

Pea Breeding Resources

Pea Breeding is actually really awesome. Especially when you can get really neat colors to recombine into new combinations. Punnet Squares to predict the genetics of pea breeding is also very helpful and fun too. This page contains a multitude of information on pea genetics.

(This page was originally hosted on my test website Biolumo.com, but since i am hosting it myself on my own computer it is not exactly a reliable place, and hence i have copied all of the relevant information here to my blog as a permanent place to find it.)

Details of Mendel’s Pea Breeding

Here is a copy of Mendel’s original paper, for those who are interested.

biologyThe Results of Mendel's crosses for seven characters in pea plants

The following pea breeding illustrations were obtained from the Eighth Edition of Biology by Neil A. Campbell. I’ve scanned the relevant illustrations about pea breeding. If you would like to view the genetics section in PDF form instead, then here you go: You can read the whole genetics chapter in a virtual pdf online.

crossing pea plantsF1 Hybrid Pea Plants

Pea Alleles, Locuspeas F2 generation

random combination of the gametes results in the 3:1 ration that Mendel observed in the F2 generationMendel Pea TestcrossMendel Independent Assortment


Rebsie Fairholm's Red-Podded Pea
Rebsie Fairholm’s Red-Podded Pea

If your still interested in pea breeding, then you might be interested in Rebsie Fairholm’s breeding projects involving peas. Not only is she breeding a very neat yellow sugar snap pea called Luna Trick, but she is also breeding an awesome red-podded pea as well! She not only shares photos and info about her crosses on her blog, but she has also provided 2 excellent tutorials for crossing peas with photos! Many of us amateur plant breeders are attempting and making progress on recreating Rebsie’s red-podded pea success here.

Trying to figure out the gentics for this rare red-podded pea is facinationg! Here are my attemopts to figure it all out with punnett squares below.

Parent Generation (P)
F1 generation if purple-pod parent is homozygous for the purple gene

F1 yp yp
purple pea
purple pea
purple pea
purple pea
F1 generation if purple-pod parent is heterozygous for the purple gene
F1 yp yp
purple pea
purple pea
Gp Gypp
green pea
green pea

But as it turns out, Rebsie’s results actually had mostly green pods. And upon doing some research about the genes responsible for the purple-podded trait, we actually find that there may instead be 3 genes needed for the anthocyanins to be present. One gene commonly called “A” is a master swich gene and is epistatic to the other genes coding for anthocyanins. The other two genes are also both required for the pod to have purple-pod’s. If this is correct than that means the punnit squares i completed above are no where close to being accurate. Here is the F1 hypothesis again, and this one as far as i know is correct this time. I have used the letter “A” to represent the on/off gene, along with “P” and “U” to represent the two purple-pod genes. I have left out the yellow podded gene because all offspring will be hetozygous for a base pod color of yellow/green.

Here is the corrected F1 generation hypothesis using the three genes for purple anthocyanin colors. We are ignoring the gene for green/yellow pods for the moment since all offspring in the F1 generation are heterozygous for dominant green and recessive yellow.


That gives us a ratio of 28 Purple : 36 Green.

So I guess Rebsie was right; in the F1 generation mostly green pods appear.

Here is the F2 Generation Hypothesis using the rule of independent assortment. Now this table is not entirely correct, but represents the “average” offspring collected from the purple-podded plants in the F1 generation. I say the average because in the best case scenario you can get purple-podded plants that be homozygous for ALL of the purple genes. On the other hand, the worst case scenario is that the purple-podded plants in the F1 will be heterozygous for ALL of the purple genes. In most cases though i think that the average purple-podded plant in the F1 will have two homozygous genes and the third gene will be heterozygous. In that case you would only need to worry about two sets of genes in the F2, nameley 1 set for anthocyanin and 1 set for yellow pods underneath.
Which in this “average” scenario results in the typical 9:3:3:1 Phenotypic Ratio.
And in this case the red-podded peas are the recombinant offspring that we are loking for.
If we take that a little furthur, that means that if you plant 50 F2 generation seeds, you should get a ratio of about 43 non-red pods : 7 red-pods.

Inheritance Of The Colors Of Pea Flowers

Mendelian Inheritance Of The Colour OF The Flower In The Culinary Pea

Pea flowers (the edible kind) come in three major colors. They can come in the “wild” form which is a Bicolour Purple, White, or Salmon Pink (pink-and-white). I first encountered this information on Rebsie’s blog, and after doing some research of my own, i found one refrence to the same imformation in a very old book from 1912 (Breeding and the Mendelian discovery by A.D. Darbishire). The purple form is dominant and is a trait mostly common in field peas. The pink form is recessive to the the purple, but is dominant to the white. The white form is recessive to all color, and is commonly associated with modern peas that have been selected for high sugar content. It’s a bit amusing the way the book talks about the purple form in relation to the other two. Apparently if you breed the pink with the white you will get purple in the F1 generation because the pink has the gene that expresses color, but the white is actually hiding the gene for purple flowers. In the book this is talked about as an ancestral trait, a throwback, and the theory of reversion.

In Darwins book, The Origin of Species, Darwin himself encounters something similar with his breeding of pigeons. Darwin bred a pure white pigeon with another white pigeon (with black tail feathers), and was very surprised because in the next generation he got a blue pigeon (which has the same coloring as the wild rock pigeon). But Darwin didn’t know about genetics, so he could only conclude that it was a ancestral throwback phenomenon. We now know that the white one with black stripes had the gene for color (black) and the pure white pidgeon was actually a blue pidgeon but did not have any active color genes. To my knowlwdge the only variety of pea known to have pink flowers is the one called ‘Salmon-flowered’.

Salmon-flowered, pink, pink-and-white pea flower Bicolour Purple pea flower white pea flower

Pea Breeding 2015: The Quest for the Red Podded (snap) Pea

A rough example of how the genetics work in peas to create a red-podded pea.
A rough example of how the genetics work in peas to create a red-podded pea.

Gardening this year has been sparse. Mainly Peas, Watermelon, a few purple-stalked indian corn plants, 2 sunflowers, and some pepper seedlings. However progress is being made on the pea breeding front. Thanks to Joseph Lofthouse i was able to receive a small sample of his F4 cross between an unremarkable and unnamed, but yellow snow pea and Sugar Magnolia a good purple snap pea. This has expedited my own quest for a good red podded pea.

Joseph’s F4 Red Podded (snap) Pea
Contrast between a red podded snap pea and a yellow snow pea
partially red-podded peas
yellow snap pea with red spots
Partially red partially yellow snow peas

For those who are interested roughly in how the genetics works i will give my best simple explanations here. The modified google logo above is a horrible, but extremely basic diagram of how the red podded peas are bred. It requires the combination of yellow podded peas (which are recessive) and purple podded peas which are dominant (however there are three genes involved, which means that if only some are present they are only partially dominant). Purple pods have a green pod underneath, but if you can get a yellow pod as the base color, then you get red pods. The real trick after crossing such peas is to get the recombinant offspring that you desire. You need to get two recessive genes for yellow pods in addition to at least 1 of each of the purple genes. But if you only get some of the purple genes and not two copies for each then you get splotchy pods. You get partially yellow partially red pods. Sometimes this can be fixed by just growing several generations and letting them segregate themselves. This is possible because peas are naturally self pollinating. The problem is sometimes one of the purple genes will segregate out and you will forever have only a partially red pea pod which will never stabilize unless you use it to do another cross.

Here is the predicted results of the F1 generation between a purple podded parent and a yellow podded parent, with the assumption that the purple podded parent is heterozygous for all 3 purple genes. This chart was done after reading about rebsie’s F1 generation having mostly green pods.


Here is an “average” prediction of the F2 generation. This is excluding one of the purple genes, because by this point you should be selecting from only purple pods. green pods will never give you purple pods, which in turn will never give you red pods.

Even Joseph’s F4 generation is still segregating between Snap pods and Snow pods, and red and yellow pea pods. So, I have some of my first red podded peas thanks to Joseph Lofthouse in Utah. And i’ve been doing as many pea crosses as i can myself. Not only for red-podded peas, but umbellatum types, pink pea flowers, large pods, snap pods, dwarf plants, etc. Should be fun. 🙂