Calling all Electronics Wizards and Open Source Hardware enthusiasts to help me fix my Motor Controller…

Okay. So, i’m a little embarrassed that this thing is still not working. I’ve made cool progress on it over the years, but not the part that matters… that it actually works. This should not be that hard. Since it’s basically an HIP4081A beefy full h-bridge controller and an Arduino it should not be all that complicated. I think what i need to do is just spend some money on known good components and true schottky diodes and mosfets and just breadboard this thing out. Once i can get this reliably working on a breadboard i can come back to the PCB design stuff. I know last time i messed with it i had a few PCB wiring issues and when i was testing the h-bridge i could only get one side to turn on. The other side was shorting out somehow.


Having said that, i’m still pretty happy with the overall PCB design and direction that is heading. I really enjoy the two PCBs that plug into each other via male and female headers ans sockets. I just put up my files (in their old unkempt state) onto GitHub for version tracking and in true Open Source Hardware fashion for others to hopefully help collaborate with me on this. I really really really want to see this thing work someday and turn into a cool motor controller that people use all over to build cool robots and stuff with in the near future.


So, please… If you are good with electronics and electronic theory, especially motor control, if you are an open source enthusiast, if your good with git, if you are good with EagleCAD, if you have an interest in a cool Open Source motor controller based on MOSFETS, if you were a user of the old FIRST Robotics, VEX Robotics, or IFI Victor 884s or 885s that this design is based on (now a defunct product to my knowledge), if you’d like a motor controller you can hack, use I2C or add a CAN bus or some other device such as a current sensing circuit, or who knows what else, then PLEASE PLEASE Help Me! Help me get this thing working and ready for market and usability and hackability. I’m not ashamed to ask for help or to admit that i need it. I’m proud of how far i got with as little electronics knowledge as i do have, but concede that there are so many other people out there that can help!




I have uploaded the last freeze of this project onto a new github project for you all to easily get the source files here:

I’ve also designed a neat little 3d printable base to keep this thing from shorting out. And i will track down the other design files that are relevant or that this design is based on in the next couple days / weeks.



*Bonus Offer: I have several old PCBs of V. 1.0 laying around. For anyone willing to help me with this project i would be willing to send you up to 3 copies of the top and the bottom boards each to play with (while supplies last). There are i think at least two potential PCB trace errors (that i can’t remember what at the moment) that are on the boards, but hey, free boards and it’s not that hard to cut a trace or two and rewire if needed. You would just need to obtain the needed mosfets, diodes, arduino, and HIP4081A h-bridge driver chip to work on the project. Heck, i’m even willing to entertain replaccing the HIP4081A chip to a different one if there are any better or cheaper options that do basically the same thing. Please Help 🙂


Preview: Upgraded Bread Machine Incubator TR444 [in progress…]


Ok. So! Back to hardware / electronics projects!! Yay!

This is a preview for an upcoming post. I am currently working on upgrading my Hacked Breadman Breadmachine TR444 Incubator from a previous project. I’m adding some RGBW neopixel LEDS from Adafruit for light. It will have a button to change lighting sequences from White to red/blue to purple, to blue, to black. All the colors one would need to 1. see into the machine. 2. Color LEDs to grow seedlings for gardening. 3. blue which may come in handy for bacteria cultures? IDK. maybe not. But whatever. I currently have the arduino code for the light sequence working.

I will also be adding a fan for circulation. I 3D printed the fan holder. I may or may not have a button to control the fan. I will have a big red button to start the incubator cycle (37 Degrees C for bacteria / fungal petri dishes). And i am considering another button for a programmed Dry Heat Sterilization routine. As mentioned before, according to Wikipedia:

The proper time and temperature for dry heat sterilization is 160 °C (320 °F) for 2 hours or 170 °C (340 °F) for 1 hour.

I also think i will be integrating my Chronodot real-time clock for use with this dry heat sterilization routine and possibly some other incubating cycle as well. Cool! Fun stuff! Lets get working!!

p.s. post in the comments if these are the kind of projects you’d like to see more of of! 🙂






Do you speak Esperanto?

Do you speak Esperanto?

So today i finally got around to 1. 3D printing a full Zamenhof statue. but also 2. finishing the Esperanto Scrabble Tiles for those who want to play a game of Skrablo with friends or those learning and practicing their Esperanto vocabulary (like i need to do).

That reminds me… my Esperanto is a bit rusty. I need to get back to practicing it. Maybe i should finally put in the effort to arrange a meeting for the local Esperanto group which so far has failed to meet in several years. hmm….. it seems when it comes to Esperanto, my head is a bit empty as well…



Happy Esperanto Day 2016!


Happy Esperanto Day!

In honor of Esperanto Day, aka. Esperanto Literature Day, aka. Zamenhof Day…

I hereby invite you all to learn about or to speak the international language Esperanto. Here you can buy the book The Hobbit (in Esperanto)!

And as a bonus (bonefiko) here is a link to your very own model of Zamenhof that you can 3D Print!

And… you can easily learn Esperanto via the Free online DuoLingo course!!


DIY Mini Taffy Machine – revisited 2016

So lately in 2016 (and quite a bit today) i’ve taken a look at revisiting my original DIY Taffy Pulling Machine from 2012. There was a lot of interest in the 2012 version, and i did try to provide enough information and detail in open source fashion for others to build their own, but i guess things just didn’t work out the best for that to happen.


The biggest reason i revisited it is because it just didn’t quite feel finished, and quite frankly those big gears posed a pinching hazard. Plus many people didn’t know where to get their own. So in an effort to solve both problems in one i decided to make internal gears, but to do that successfully i had to shrink them down. In the process i decided it was time to make the gears 3D-printable thereby speeding up my own design process, but also opening up this design to a whole new set of people that otherwise would not be able to make one.


I hereby am pleased to announce the re-releasing of my Mini Taffy Machine as an Open Source Hardware project. I have improved the CAD files and PDF assembly drawings with good blueprint title blocks (a skill i obtained from my recent machining courses this semester). So i hope you all enjoy and i look forward to seeing more of these in the wild and new iterations and modifications that people come up with!! (




Modding the Lulzbot Mini

So recently i’ve finally gotten my homemade / homebuilt Lulzbot mini working. And it’s working pretty good. The most critical problem i was facing was that my 3d printer would start printing either too close to the heat bed (or if i added extra bed leveling washers) it would print too far away. This was a critical problem as the first few layers are the most important and if you can’t get you prints to stick to your print bed then the rest of the print will usually unstick and fail. Thanks to some helpful people on the Lulzbot forum i was able to adjust my z-offset to the correct height that worked for me.

The second issue is that recently i’ve noticed my large and tall prints failing miserably at a certain height and the filament not coming out thick enough and the top gets all cob-weby like a spider web, but worse. Apparently this is called “Heat Creep”. The problem in part may be caused by the tiny blower fan on the Lulzbot mini not providing enough cooling and heat slowly rising in the hot end until the filament actually melts too soon and cannot be extruded properly. This makes sense as the problem only occurs after a long time printing. So the logical step was to replace the tiny blower fan (or squirrel fan) with a larger fan that will do the job. The new Taz 6 has obviously taken that tiny fan into consideration and has changed it to a large 40mm fan.

EDIT: The failing on large prints may be due to me using a half-size stepper instead of a full size stepper motor for the extruder. This means too much voltage is being applied to the motor and it is getting super hot. Over time this means the motor looses steps and probably causes my printing problems.

Unfortunately the Taz 6 x-carriage and modifications are not a drop in replacement for the Lulzbot Mini i decided to make my own. This is what i came up with and it seems to work beautifully.



I have only tested this on HIPS so far, but it has eliminated the heat creep i was getting with HIPS. PLA apparently suffers more from heat creep problems than other filaments, but this mod will likely help with PLA heat creep issues as well.


Preview: Zamenhof meets 3D Printing?

Screenshot from 2016-05-18 07-48-01

Antaŭprezenton / Antaŭrigardon : Zamenhof renkontas 3D presanta?

Cŭ Zamenhof kunvenos KNK (Komputilo Nombra Kontrolo) maŝinojn?

Will Zamenhof meet CNC (Computer Numerical Control) machines?

Cŭ Esperanto renkontos 3D Presanta?

Will Esperanto meet 3D Printing?